
Making electromagnetic wavelets

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 5929

(http://iopscience.iop.org/0305-4470/37/22/015)

Download details:

IP Address: 171.66.16.90

The article was downloaded on 02/06/2010 at 18:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 5929–5947 PII: S0305-4470(04)76781-5

Making electromagnetic wavelets

Gerald Kaiser

Center for Signals and Waves, 3803 Tonkawa Trail #2, Austin, TX 78756-3915

E-mail: kaiser@wavelets.com

Received 26 February 2004
Published 18 May 2004
Online at stacks.iop.org/JPhysA/37/5929
DOI: 10.1088/0305-4470/37/22/015

Abstract
Electromagnetic wavelets are constructed using scalar wavelets as
superpotentials, together with an appropriate polarization. It is shown that
oblate spheroidal antennas, which are ideal for their production and reception,
can be made by deforming and merging two branch cuts. This determines a
unique field on the interior of the spheroid which gives the boundary conditions
for the surface charge-current density necessary to radiate the wavelets. These
sources are computed, including the impulse response of the antenna.

PACS numbers: 02.30.Jr, 02.30.Uu, 41.20.Jb, 41.85.Ct

1. Complex distance and its branch cuts

Electromagnetic wavelets were introduced in [K94] as localized solutions of Maxwell’s
equations. They are ‘wavelets’ in the historical sense of Huygens as well as the modern
one: being generated from a single ‘mother wavelet’ by conformal transformations including
translations and scaling, they form frames that provide analysis-synthesis schemes for general
electromagnetic waves. Together with their scalar (acoustic) counterparts, they have been
called physical wavelets. It was pointed out that they can, in principle, be emitted and absorbed
causally, and applications to radar and communications have been proposed [K96, K97, K1]
based on their remarkable ability to focus sharply and without sidelobes. Similar objects,
long studied in the engineering literature under the name complex-source pulsed beams, have
been used to build beam summation methods and analyse the behaviour of solutions (see
[HF1] for a recent review). However, to implement the proposed applications to radar and
communications, the wavelets must be realized by simulating their sources. This has proved
to be difficult, and detailed investigations have only been made recently [HLK0, K3]. Here I
present a new and rather complete analysis of the sources based on an insight which I believe
is a key to their realization: the sources can be constructed from the very branch cuts that give
the wavelets their remarkable properties.
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Physical wavelets are based on the idea of displacing a point source to complex
coordinates. Since a real translation gives nothing new, it suffices to discuss a point source
with purely imaginary coordinates ia. It will be seen that this results in a real, coherent,
extended source distribution parametrized by the single vector a, much as an antenna dish can
be described by a single vector giving the orientation and radius of the dish.

Recall the definition of the complex distance σ from the imaginary source point ia to the
real field point r,

σ(r − ia) =
√

(r − ia) · (r − ia) =
√

r2 − a2 − 2ia · r. (1)

For each fixed source location ia �= 0, its branch points form a circle:

σ = 0 ⇒ r ∈ C = {r ∈ R
3 : r = a,a · r = 0}.

It is important to note the topological difference between a �= 0, when R
3 − C is multiply

connected, and a = 0, when C contracts to the origin and R
3 − C becomes simply connected.

Writing

σ = p − iq (2)

note that (1) implies

r2 − a2 = p2 − q2 a · r = pq

from which one easily obtains the relations to the cylindrical coordinates with z-axis parallel
to a:

az = pq aρ = a
√

r2 − z2 =
√

p2 + a2
√

a2 − q2. (3)

This gives an important bound on the ‘complexness’ of σ in terms of the ‘complexness’ of its
argument:

|q| � a or |Im σ(z)| � |Im z| z = r − ia.

It follows from (3) that

ρ2

a2 + p2
+

z2

p2
= ρ2

a2 − q2
− z2

q2
= 1

hence the level surfaces of p2 form a family of oblate spheroids

Sp = {r : p2 = const > 0} =
{
r :

ρ2

a2 + p2
+

z2

p2
= 1

}
(4)

and those of q2 form the orthogonal family of one-sheeted hyperboloids

Hq ≡ {r : 0 < q2 = const < a2} =
{
r :

ρ2

a2 − q2
− z2

q2
= 1

}
. (5)

To complete the picture, we include the following degenerate members of these families,

S0 = {r : 0 � ρ � a, z = 0} (6)

H0 = {r : a � ρ < ∞, z = 0}
Ha = {r : ρ = 0,−∞ < z < ∞} (7)

where S0 and H0 each form a twofold cover of the indicated sets.
The families Sp and Hq are depicted in figure 1, along with the azimuthal half-plane

φ = constant. They are confocal, with the branch circle C as their common focal set. Note
that the intersection of Sp with Hq consists of two circles whose further intersection with the
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Figure 1. The level surfaces of σ form an oblate spheroidal coordinate system.

azimuthal half-plane consist of two points for each choice of (p2, q2, φ). When p = q = 0,
the two circles merge with the branch circle C. The set of numbers

(σ, φ) ≡ (p, q, φ) −∞ < p < ∞ −a � q � a 0 � φ < 2π

therefore gives a twofold cover of R
3 − C. To obtain a coordinate system, we must choose

between the two covers, and this amounts to choosing a branch cut that makes σ single valued,
as explained below. This will result in a one-to-one correspondence between (σ, φ) and points
r ∈ R

3 not on the branch cut, giving an oblate spheroidal coordinate system.
If we continue σ analytically around a closed loop threading the branch circle C, it returns

with its sign reversed. To make it single valued, it is therefore necessary to choose a branch
cut that prevents the completion of the loop. Note from (1) that

r � a ⇒ σ ≈ ±(r − ia cos θ). (8)

The spatial region with r � a will be called the far zone (we need a > 0 here to set the scale).
Since we want σ to generalize the usual positive distance r, we insist that

r � a ⇒ p ≈ r q ≈ a cos θ. (9)

If follows from (9) that the branch cut B is bounded since it must be entirely contained inside
any spheroid Sp with p2 sufficiently large, and its boundary must be the branch circle:

∂B = C. (10)

(The alternative is a branch cut extending from C to infinity, but this violates (9).) B is therefore
a membrane spanning C, and any such membrane will do. The situation is best understood
topologically. The analytic continuation of the distance has opened up a window connecting
the two branches of r = √

r · r, thus making R
3 − C multiply connected. The spherical

coordinates r and θ merge analytically into σ , which is double valued, and the choice of a
branch cut B makes R

3 − B simply connected and σ single valued.
Let σ0 denote the complex distance with the flat disc S0 as branch cut:

σ0 = p0 − iq0 p0 � 0 −a � q0 � a. (11)

The complex distance σB with B as branch cut is now defined as follows. Choose an arbitrary
reference point r0 in the far zone, where σB = σ0. To find σB at any other point r, continue
analytically along an arbitrary path from r0 to r, with the following rule: whenever the path
crosses B, σB changes sign. This gives a unique definition of σB, and both pB and qB have a
jump discontinuity across the interior of B. Of course, σB = σ0 = 0 on C.
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Figure 2. The cut function χ(q) = Xε(q) with ε = 0.005 and its branch cut with a = 1. The two
sheets have been purposely separated to show the double cover.

A general branch cut can be specified by a function χ(p, φ) as

B = {r ∈ R
3 : p = χ(q, φ),−a � q � a, 0 � φ � 2π}, (12)

where the cut function χ must satisfy

χ(−q, φ) = −χ(q, φ) χ(q, 2π) = χ(q, 0). (13)

The first condition ensures that σ changes sign across B, while the second ensures that it
is continuous across the half-plane φ = 0 on each side of B. Note that B need not be
cylindrically symmetric. We will be especially interested in the cuts Bα defined by the
cylindrical cut functions

χα(q) = α Sgn(q). (14)

Note that on Bα we have

az = pq = αq Sgn(q) = α|q|.
If α > 0, then the values q �= 0 generate the upper spheroid

S+
α = {r ∈ Sα : z > 0}.

But this does not include the branch circle C, so the bounding condition (10) is not satisfied.
The problem is that Sgn(q) is undefined at q = 0, and the set of all points with q = 0 is
the degenerate hyperboloid H0 (7). Hence we define the part of Bα with q = 0 as the apron
bridging the gap between C and S+

α ,

B0
α = {r : a � ρ �

√
a2 + α2, z = 0}.

Thus, for α > 0, χα(q) defines the upper spheroidal branch cut

Bα = S+
α ∪ B0

α ∂Bα = C. (15)

Similarly, χ−α(q) defines the lower spheroidal cut

B−α = S−
α ∪ B0

α ∂B−α = C. (16)

As α → 0, both cuts contract to the doubly covered flat disc spanning C, which is the
degenerate spheroid S0 (6).

Every branch cut B is doubly covered. Consider any simply connected, closed surface S
containing C in its interior. Think of S as a balloon and of C as a rigid wire ring. Now deflate
the balloon, and you have a branch cut bounded by C. In particular, if we take S = Sα and
keep the upper spheroid rigid while deflating, the balloon stretches around the ring to cover
the underside of S+

α and we obtain the cut (15) (see figure 2).
The image of a branch cut as a balloon enclosing the singular ring is similar to Penrose’s

idea of cosmic censorship in general relativity [W99, chapter 5] where a horizon (S) prevents
the outside observer from seeing a naked singularity (C). In light of the connection with
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Newman’s analytic Coulomb field (see the discussion below (54)), the two may in fact be
closely related.

The discontinuity of χα in (14) causes two problems: the q = 0 contribution is undefined
(hence the aprons B0

α had to be chosen ‘by hand’), and the resulting cut had a sharp edge. For
computational purposes, it may be better to use smooth cut functions to avoid both problems.
Let ε > 0 and define

Xε(q) = 1

π
Im ln

(
ε + iq

ε − iq

)
χ(q) = αXε(q). (17)

For ε � a,Xε(q) is a smoothed version of Sgn(q) and the resulting branch cut closely
approximates Bα without the need to define the apron separately. This is shown in
figure 2.

2. Scalar wavelets

For any fixed choice of branch cut B, we now denote the complex distance simply by σ . Scalar
wavelets are then defined as the retarded solutions


(z, τ ) = g(τ − σ)

σ
≡ gr

σ
z = r − ia τ = t − ib (18)

where we have set the propagation speed c = 1 (otherwise gr = g(τ − σ/c)) and g is the
analytic-signal transform of a driving signal g0(t), defined1 as the convolution of g0 with the
Cauchy kernel:

g(τ) = 1

2iπ

∫ ∞

−∞

g0(t
′) dt ′

τ − t ′
τ = t − ib

= b

2π

∫ ∞

−∞

g0(t
′) dt ′

(t ′ − t)2 + b2
+

i

2π

∫ ∞

−∞

(t ′ − t)g0(t
′) dt ′

(t ′ − t)2 + b2

= g1(t, b) + ig2(t, b). (19)

g1(t, b) and g2(t, b) are smoothed versions of 1
2g0(t) and its Hilbert transform, with b as the

smoothing parameter. We assume that g0(t) decays at infinity, from which it follows that g(τ)

is analytic in the upper and lower complex time half-planes C
±. The original driving signal

can be recovered as the boundary value

g0(t) = lim
b→+0

[g(t − ib) − g(t + ib)] .

(The limit of the sum gives the Hilbert transform.) In particular, if g0 vanishes on any open
interval I, this interval becomes a window between the upper and lower half-planes through
which the functions g(t ± ib) can be connected so that they are both part of a single analytic
function. (This is a special case of the edge of the wedge theorem in higher dimensions; see
[K3].) Since every practical driving signal vanishes at least in the remote past, this property
will be assumed. Note that this excludes time-harmonic driving signals, which are however
idealizations.

Now consider the numerator of (18),

g(τ − σ) = g(t − p − i(b − q)).

Suppose that |b| � a. Then g(τ − σ) is undefined along the semi-hyperboloid where
q(r) = b, except when t − p(r) is in the zero-set of g0. On the other hand, if |b| > a, then
b − q(r) vanishes nowhere and g(τ − σ) is analytic at all (r, t). Therefore we assume from
now on that

|b| > a (20)

1 This is a special case of a multidimensional definition; see [K3].
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so that g(τ − σ) is defined unambiguously everywhere. The imaginary source coordinates
must therefore belong either to the future cone or to the past cone of spacetime,

b > a ⇒ (a, b) ∈ V+ b < −a ⇒ (a, b) ∈ V−

which means that the complex 4-vector from the source point iy = i(a, b) to the field point
x = (r, t) belongs either to the forward tube or the backward tube of complex spacetime
[SW64, K3],

T± = {z = x − iy ∈ C
4 : y ∈ V±} x = (r, t) y = (a, b). (21)

The source distribution of 
 is now defined as a generalized function by applying the wave
operator,

S(z) = (
∂2
t − ∇2

)

(z) = �x
(z), (22)

where �x indicates that the operator acts only on the real spacetime variables x of the field
point. It is well known that

� h(t − r)

r
= 4πh(t)δ(r) (23)

for any differentiable function h, and this can be extended to 
(z). Since 
 is differentiable
in r everywhere outside of the branch cut B, (23) suggests that S is a (Schwartz) distribution
supported on B, a conclusion borne out by a rigorous analysis [K3]. The discontinuity of 


across B gives a combination of simple and double layer terms of S on B [K3].
The frequency content of g(τ) determines that of 
 and should therefore be understood.

Substituting the Fourier representation of g0 into the definition (19) and reversing the order of
integration give

g(τ) = 1

2iπ

∫ ∞

−∞

dt ′

τ − t ′

∫ ∞

−∞

dω

2π
ĝ0(ω) e−iωt ′

=
∫ ∞

−∞

dω

2π
ĝ0(ω)

1

2iπ

∫ ∞

−∞

e−iωt ′ dt ′

τ − t ′
. (24)

The contour in the second integral can be closed in the lower half-plane if b > 0 and in the
upper half-plane if b < 0, giving

g(τ) = Sgn(b)

∫ ∞

−∞

dω

2π
ĝ0(ω)�(ωb) e−iωτ τ = t − ib (25)

where �(ωb) is the Heaviside step function. Thus if b > 0, g contains only the positive-
frequency components of g0, and if b < 0, it contains only the negative-frequency components.
In either case, the factor e−ωb in the extended Fourier kernel

e−iωτ = e−ωbe−iωt

acts as a low-pass filter, substantially damping frequencies |ω| � b−1 and thus smoothing out
g(τ). If the driving signal g0 is assumed real, then ĝ0(±ω) are related by complex conjugation
and therefore so are g(t ∓ ib). If g0 is complex, then ĝ0(±ω) are unrelated and so are
g(t ∓ ib).

Example. Let g(τ) be the (n − 1)st derivative of the Cauchy kernel2,

g(τ) = Cn(τ) = (i∂t )
n−1 1

2iπτ
= (n − 1)!

2π inτ n
(26)

2 The driving signal is the singular distribution g0(t) = (i∂t )
n−1δ(t), but this can be approximated.
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whose Fourier transform is

Ĉn(ω, b) =
∫ ∞

−∞
dt eiωtCn(t − ib) = Sgn(b)�(ωb)ωn−1 e−ωb. (27)

Thus, while b acts to suppress high frequencies, n > 1 acts to suppress low frequencies and
we end up with a band-pass filter whose effective centre frequency and bandwidth are given
by a Poisson distribution,

ωn = n

b
�ω =

√
n

|b| . (28)

The behaviour of 
 in the far zone is governed by that of g(τ − s). By (9),

Cn(τ − σ) = (n − 1)!

2π in(τ − σ)n
≈ (n − 1)!

2π [(b − a cos θ) + i(t − r)]n

is a pulse with angle-dependent duration

T (θ) = |b − a cos θ | � |b| − a = Tmin > 0 (29)

being shortest at θ = 0 if b > a and at θ = π if b < −a. While the pulse duration is
independent of n, the strength of the peak depends jointly on the size of n and the smallness
of b − a:

M(θ) = |g(τ − σ)|t=r ≈ (n − 1)!

2πT (θ)n
. (30)

To get a measure of the diffraction angle, assume b > a for definiteness. Fix β > 0 and look
for the angle θβ at which

M(θβ) = e−βM(0).

Then

(b − a cos θβ)n = eβ(b − a)n

which gives

2 sin2(θβ/2) = 1 − cos θβ = (eβ/n − 1)
b − a

a
. (31)

Thus, θβ can be made small either by choosing b − a � a, or n � β. In either case, the
right-hand side gives θ2

β

/
2. A reasonable measure is obtained with β = 1.

3. From scalar to vector wavelets

It is well known that every electromagnetic field can be derived from a pair of real
scalar potentials, the most well-known examples of which are the Whittaker and Debye
superpotentials [N55]. In this section we use the scalar wavelet 
 as a complex Whittaker
superpotential. Although this is equivalent to using a pair of real potentials, disentangling
the real and imaginary parts leads to unnecessarily complicated expressions, something like
taking the real and imaginary parts of a complicated analytic function f (x + iy) in order to
obtain two real harmonic functions. To see how bad it gets, note from (49) that the fields and
currents contain terms of the type σ k−3g(k)(τ −σ) with k = 0, 1, 2. In the simplest case k = 2
(which will give the radiation terms of the field), (19) gives

g̈(τ − σ)

σ
= g1(t − b, b − q) + ig2(t − b, b − q)

p − iq

Re

{
g̈(τ − σ)

σ

}
= pg̈1(t − b, b − q) − qg̈2(t − b, b − q)

p2 + q2

Im

{
g̈(τ − σ)

σ

}
= pg̈2(t − b, b − q) + qg̈1(t − b, b − q)

p2 + q2

(32)
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and it is clear that the real expressions quickly become unmanageable. Thus, although we
work with complex potentials and fields, we view this as a very compact and efficient way
of computing the real fields. In particular, our expressions contain nothing extraneous since
their imaginary as well as real parts have a direct physical significance. This strategy is based
on the analyticity of 
 outside the source region, which will indeed make harmonic pairs out
the fields D and B, as seen below.

With 
 as a complex Whittaker superpotential, we define the retarded complex Hertz
potential

Z = 
π (33)

where π is a fixed complex polarization vector that can be seen [K3] to be a combination of
(real) electric and magnetic dipole moments. The real and imaginary parts of Z

Z = Ze + iZm

are interpreted as electric and magnetic Hertz vectors [BW99, p 84, 85]. They generate a
4-vector potential Aµ (µ = 0, 1, 2, 3) by

A0 = −∇ · Ze A = ∂tZe + ∇ × Zm (34)

which automatically satisfies the Lorenz condition

∂tA0 + ∇ · A = 0. (35)

In turn, it follows from potential theory (or the Poincarè lemma for differential forms) that
every 4-vector potential satisfying (35) can be written in the form (34), so this representation
is quite general. (We can even dispense with the Lorenz condition by performing a gauge
transformation on Aµ. See [N55] for an excellent and thorough account of Hertz potentials
and their enormous gauge group.) The real vector fields P e and P m defined by

P = P e + iP m = � Z = (� 
)π = Sπ (36)

are the electric and magnetic polarization densities. They are distributions supported spatially
on the branch cut B. Since we are in Lorenz gauge, the charge-current density is Jµ = � Aµ,
hence

J0 = −∇ · P e J = ∂tP e + ∇ × P m (37)

with charge conservation guaranteed by the Lorenz condition. The polarization densities thus
act as ‘potentials’ for the charge-current density, a property inherited directly from (34).

The reason why Hertz potentials will be so useful can be seen by computing the fields:

B = ∇ × A = ∇ × ∇ × Zm + ∂t∇ × Ze (38)

and

E = −∇A0 − ∂tA = ∇∇ · Ze − ∂2
t Ze − ∂t∇ × Zm

= −� Ze + ∇ × ∇ × Ze − ∂t∇ × Zm. (39)

Taking into account (36) gives

D = E + P e = ∇ × ∇ × Ze − ∂t∇ × Zm (40)

which is a kind of ‘harmonic conjugate’ of (38), so the real fields D,B can be expressed
compactly in the complex form [S41, pp 32–34]

F ≡ D + iB = ∇ × ∇ × Z + i∂tZ. (41)

Note that outside the branch cut B,P e = 0 and D = E. The Hertz formalism thus
automatically takes account of the polarization, so that the expression (40), if interpreted
as a distribution, is valid even within a singular source region.
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Again I emphasize that F = D + iB is ‘real’ in the sense that D and B are real, physical
fields. Yet F , like 
, is analytic in the source-free complex spacetime region

TB = {(r − ia, t − ib) ∈ C
4 : |b| > a, r /∈ B}. (42)

More simply, because of their spheroidal symmetry, 
 and F are analytic functions of the two
complex variables (σ, τ ) in the region

UB = {(σ, τ ) ∈ C
2 : |b| > a, p �= χB(q)} (43)

where χB(q) is the cut function for B. Thus D and B are really harmonic conjugates
as suggested earlier. On the other hand, P and Jµ characterize the singularities spoiling
analyticity in the source region, including the branch points and branch cuts. This differs
from the usual practice in the frequency domain, where (D,B) are the real parts of separate
complex fields (Dc,Bc), and it might appear that these two representations are in conflict
since the real fields cannot be extracted by taking the real and imaginary parts of Dc + iBc.
To clarify this, consider the frequency components of F ,

F ω =
∫ ∞

−∞
dt eiωtF = Dω + iBω

and note that since F is complex, its positive- and negative-frequency components are
independent. Therefore a general monochromatic field consists of two terms,

Gmono = e−iωtF ω + eiωtF −ω ω > 0

= e−iωt (Dω + iBω) + eiωt (D−ω + iB−ω)

= e−iωt (Dω + iBω) + eiωt (D∗
ω + iB∗

ω)

where the reality conditions have been used on Dω and Bω. The representation of a
monochromatic field is therefore no different from that of a general field:

Gmono = Dmono + iBmono

with both fields real:

Dmono(t) = 2 Re{e−iωtDω} Bmono(t) = 2 Re{e−iωtBω}.
Recall that for b > a and b < −a, the analytic signal g(τ) contains only positive- and
negative-frequency components. Therefore

b > a ⇒ Dω + iBω = 0 ∀ω < 0 b < −a ⇒ Dω + iBω = 0 ∀ω > 0.

This shows that the monochromatic components of the electromagnetic wavelets satisfy

Bmono(t) = 2 Re{ie−iωtDω} = Dmono(t − π/2ω),

so B trails D if b > a, and it leads D if b < −a. (Recall also that the pulse travels along
±a if ±b > a.) More generally, the wavelets are helicity eigenstates with helicity 1 if b > a

and −1 if b < −a. This concept applies not only the time-harmonic components but also
to general time domain fields [K3a]. As already mentioned, using the analytic combinations
of fields also has the great advantage of compactness and simplicity over the alternative of
disentangling the real and imaginary parts.

Before launching into the field computations, I want to prepare the way for computing
equivalent currents on the spheroid Sα in the coming section. Let us construct this spheroid
from the two branch cuts B±α given in (15) and (16). Let us now denote by σ the complex
distance with the disc S0 as branch cut. This will be used as a reference for defining the
complex distance functions with B±α as cuts, which we denote by σ±. Let V± be the volumes
bounded by S±

α together with S0, so that

∂V+ = S+
α − S0 ∂V− = S0 − S−

α
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Figure 3. Values of the branches σ± of the complex distance function determined by the branch
cuts B±α , given in terms of the branch σ determined by the disc S0.

where the signs are related to the orientations of S±
α and S0 by a. The union and compliments

of V± will be denoted by

V = V+ ∪ V− V ′
± = R

3 − V± V ′ = R
3 − V.

Now recall the rule for crossing a branch cut other than the reference cut S0: σB changes sign.
Thus, denoting the complex distance functions with respect to B±α by σ±, we have

σ± =
{
σ in V ′

±
−σ in V±

(44)

as shown in figure 3.
The field radiated jointly by the two branch cuts B±α is therefore

F α(σ, τ ) =



2F (σ, τ ) in V ′

F (−σ, τ) + F (σ, τ ) in V+

F (σ, τ ) + F (−σ, τ) in V−.

Observe that there is no field discontinuity in going from V+ to V−, hence

F α(σ, τ ) =
{

2F (σ, τ ) in V ′

F (−σ, τ) + F (σ, τ ) in V
(45)

as depicted in figure 4.
The transition σ → −σ across a branch cut turns retarded fields into advanced fields

since


(−σ, τ) = −g(τ + σ)

σ
. (46)

Although advanced fields are usually associated with acausal behaviour, there is a perfectly
causal explanation for (46). Consider the field radiated backward from Bα , as observed in
V+. Due to the curvature of the back side of Bα , this field converges towards the focal ring C
and, having passed though, it is no longer in V+ and therefore diverges normally. A similar
argument explains why the field emitted forward from B−α first converges towards C and
then diverges away from it. The usual acausal behaviour associated with advanced fields is
due to the assumption that they remain advanced for the indefinite future. (This argument
also applies to time-reversed acoustics [F0], where time reversal occurs only in a bounded
spacetime region.)
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Figure 4. Interior and exterior fields radiated by the oblate spheroid Sα , represented as a
combination of the two branch cuts B±α .

It was shown in [K3] that the sources of 
(σ, τ) and 
(−σ, τ) are equal and opposite;
that is they form a source-sink pair:

�
(−σ, τ) = −�
(σ, τ) = −S. (47)

The proof is trivial for real point sources, where

� g0(t ± r)

r
= −4πg0(t ± r)δ(r) = −4πg0(t)δ(r).

But it is more subtle for complex point sources because the extended delta function

δ̃(z) = −∇2 1

4πσ
z = r − ia

with a �= 0 fixed, is not supported at a single point but on the entire branch cut B and therefore

f (σ)δ̃(z) �= f (0)δ̃(z).

In fact, the left-hand side is not even defined since σ is discontinuous precisely on the disc
supporting δ̃(z); therefore, some care must be used in proving (47).

Equation (47) shows that the interior superpotential 
(σ, τ) + 
(−σ, τ) is sourceless,
as are the Hertz potentials and electromagnetic fields derived from it. The interior field is

F 0(σ, τ ) = F (σ, τ ) + F (−σ, τ). (48)

Let us first compute the exterior field F , which will give the interior field by symmetrizing
with respect to σ . Let


 ′ ≡ ∂σ
 = − ġr

σ
− gr

σ 2
ġr = ∂tgr(τ − σ)


 ′′ = ∂σ
 ′ = g̈r

σ
+

2ġr

σ 2
+

2gr

σ 3
= g̈r − 2
 ′

σ

u = ∇σ = ∇p − i∇q = z

σ

and note that u is a complex unit vector:

u · u = z ·z

σ 2
= 1.
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Thus

∇ × Z = ∇
 × π = 
 ′u × π

∇ × ∇ × Z = 
 ′′u × (u × π) + 
 ′∇ × (u × π)

and by a simple computation,

u × (u × π) = λu − π λ = u · π

∇ × (u × π) = −λu + π

σ
.

Therefore (41) gives

F = 
 ′′(λu − π) − 
 ′

σ
(λu + π) + i
̇ ′u × π

or

F =
(

g̈r

σ
+

3ġr

σ 2
+

3gr

σ 3

)
λu −

(
g̈r

σ
+

ġr

σ 2
+

gr

σ 3

)
π − i

(
g̈r

σ
+

3ġr

σ 2

)
u × π. (49)

This expression will be written compactly as

F = Lλu − Mπ − iNu × π (50)

where

L = g̈r

σ
+

3ġr

σ 2
+

3gr

σ 3
M = g̈r

σ
+

ġr

σ 2
+

gr

σ 3
N = g̈r

σ
+

ġr

σ 2
. (51)

We now examine the far field to see under what conditions the polarization vector π gives the
strongest beams. In the far zone (9) we have

r � a ⇒ σ ≈ r − ia cos θ u ≈ er .

Therefore

F far = g̈(τ − σ)

r
(λer − π − ier × π)

= − g̈(τ − σ)

r
(π⊥ + ier × π⊥) (52)

where

π⊥ = π − (π ·er )er

is the component of π orthogonal to r which, as expected, is the only one that matters in the
far zone. Note that while we have replaced σ by r in the denominator of (52), the presence
of Im σ ≈ −r cos θ in g(τ − σ) plays an essential role in determining both the collimation of
the beam and the duration of the pulse, as already seen in (30) for g(τ) = Cn(τ).

The far field satisfies the helicity condition

ier × F far = F far (53)

or equivalently

Bfar = er × Dfar Dfar = −er × Bfar.

As we are interested mainly in the paraxial region of the far zone, the most efficient choice of
π is orthogonal to a. Since

r = ρ + zâ ⇒ u = r − ia

σ
= ρ

σ
+

z − ia

σ
â

this implies

λ = u · π = ρ · π

σ
.

The far-zone energy density is

Efar = 1
2 {|Dfar|2 + |Bfar|2} = 1

2 |F far|2
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and, by (53), the far-zone Poynting vector is

Sfar = Efar × H far = Dfar × Bfar = 1

2i
F ∗

far × F far

= 1

2
F ∗

far × (er × F far) = 1

2
|F far|2er = Efarer

since F far is orthogonal to er .

4. Equivalent currents

In principle, the scalar source generates the charge-current density by (36) and (37). But this
would involve not only the messy disentangling of the real and imaginary parts of P = Sπ
(with both factors complex), but also dealing with the singular nature of S. While S is well
defined mathematically as a distribution [K3], it seems to be of little direct value from a practical
point of view. Since S is supported on the branch cutB, one expects the electromagnetic sources
to consist of a surface charge density j0 and a surface current density j. But it turns out that
these surface sources are singular on the branch circle C, where σ = 0. The essence of the
problem can be understood from a careful analysis, given in [K1a], of a much simpler case,
which we now recall.

Example. The analytically continued Coulomb field due to point charge of strength Q = 1 is

C(r − ia) = −∇ 1

4πσ
= r − ia

4πσ 3
. (54)

Newman [N73] has shown that this can be identified with a real electromagnetic field (D,B)

by

C = D + iB (55)

interpreted as the flat-spacetime (zero-mass) limit of the Maxwell field in the Kerr–Newman
solution in general relativity [N65], which represents a spinning black hole of unit charge3.
It is instructive to compute the surface sources on a branch cut, which for simplicity we now
take to be the disc S0 defined in (6). On the upper and lower faces of S0, we have

p → +0 z → ±0 σ → ∓i
√

a2 − ρ2

hence

C → ∓ iρ

4π(a2 − ρ2)3/2
∓ a

4π(a2 − ρ2)3/2
.

The jumps in D and B across the cut are therefore

δD = − a

2π(a2 − ρ2)3/2
δB = − 2ρ

2π(a2 − ρ2)3/2
.

Since δD is orthogonal and δB is tangent to S0, it follows that the magnetic surface
charge- and current-densities vanish as required. The electric surface densities are given by
[J99, p 18]

j0 = −â · δD = − a

2π(a2 − ρ2)3/2

j = â × δB = − câ × ρ

2π(a2 − ρ2)3/2
= − cρeφ

2π(a2 − ρ2)3/2

(56)

3 When D in (55) is reinterpreted as a Newtonian force field, then B is a gravitomagnetic field related to the ‘dragging’
of Einsteinian spacetime in the vicinity of a spinning body. Evidently, this effect survives the flat-spacetime limit as
the conjugate-harmonic partner to the Newtonian gravitation.
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where we have inserted the speed of light (taken earlier to be c = 1) for dimensional reasons.
Before discussing the problem with (56), note that if we define the local charge velocity by

v ≡ j

σ
= cρ

a
eφ (57)

its linearity in ρ suggests a ‘hydrodynamic’ interpretation of S0 as a rigidly spinning charged
disc with angular velocity

� = c/a. (58)

In particular, the rim C is moving at the speed of light. While this conclusion seems bizarre in
ordinary electrodynamics, it is entirely consistent with the origin of the field C as the residual
Maxwell field of a charged, spinning black hole. The investigation in [K1a] has sparked
a renewed interest in Newman’s original paper [N73], leading to similar interpretations
of linearized gravitational fields [N2] and a generalized Lienard–Wiechert field where the
radiating point source moves along an arbitrary trajectory in complex spacetime [N4]. Our
antennas will be similar, but their source is a dipole following a complex trajectory and not a
monopole, and so their charge-current densities are generated by polarizations.

We now come to the main lesson taught by this example. C is an analytic continuation
of the Coulomb field of a point source with charge Q = 1. If the continuation is to make
physical sense, the total charge should remain unchanged. This is contradicted by j0, which
is not only strictly negative but whose total charge on S0 is −∞! To resolve this difficulty,
it is necessary to treat the charge-current density as a singular volume distribution, just as the
scalar source S = � 
 was treated in [K3]. The inhomogeneous Maxwell equations now
state that the (volume) charge- and current-density are

J0 = ∇ · F J = −∂tF − i∇ × F (59)

while the homogeneous Maxwell equations require that J0 and J be real. Taken as definitions
of the sources in the sense of generalized functions, it was shown in [K3a] that (59) indeed
give a sensible answer. The equivalent surface sources on any spheroid Sα with α > 0 are
defined by

j0 = ep · δF j = −iep × δF (60)

where the outgoing unit normal ep on Sα is computed in the appendix. These sources are
found to be complex, which means that they include a magnetic charge-current density; the
latter vanishes in the limit α → 0, in agreement with the above conclusion. The advantage
of using α > 0 is that the sources are smooth and bounded, with a total charge Q = 1 as
required. As α → 0, they decompose into surface sources on the interior of the disc which
coincide with (56), plus line sources on the rim C. The line sources carry a total charge of ∞,
but when the entire source distribution is treated as a generalized function, it carries the correct
total charge Q = 1. The problem with (56) is that the jump conditions (using infinitesimal
pillboxes and loops) can be applied only on the interior of the disc and not on its boundary
C. A similar argument applies to every branch cut, showing that caution must be exercised in
computing equivalent sources, a lesson we will recall when computing the currents required
to produce electromagnetic wavelets.

Finally, we turn to computing the equivalent sources for F on the spheroid Sα . Some
important properties of equivalent real scalar surface sources were analysed in [HLK0], but
their connection to the vector case and, specifically, to our topological use of branch cuts,
remains to be explored.

According to (45) and (48), the jump in the field across the spheroid is

δF (σ, τ ) = F (σ, τ ) − F (−σ, τ) (61)
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where the complex distance σ with respect to S0 is continuous across Sα . Unlike the sum (48)
of retarded and advanced fields, the difference (61) does have sources and they are confined to
the surface Sα , which we shall presently compute. Begin by writing (50) in the more explicit
form

F (σ, τ ) = L(σ, τ)λu − M(σ, τ)π − iN(σ, τ)u × π (62)

with L,M,N given in terms of the retarded signal gr(σ, τ ) = g(τ − σ) by

L(σ, τ) = g̈r

σ
+

3ġr

σ 2
+

3gr

σ 3
M(σ, τ) = g̈r

σ
+

ġr

σ 2
+

gr

σ 3
N(σ, τ) = g̈r

σ
+

ġr

σ 2
.

Define the mixed signals g± by

g±(σ, τ ) = g(τ − σ) ± g(τ + σ)

and note that

σ → −σ ⇒ u = z

σ
→ −u λ = u · π → −λ.

Then we obtain the following expression for the field discontinuity:

δF = L̃(σ, τ )λu − M̃(σ, τ )π − iÑ(σ, τ )u × π (63)

where

L̃(σ, τ ) = g̈+

σ
+

3ġ−
σ 2

+
3g+

σ 3
M̃(σ, τ ) = g̈+

σ
+

ġ−
σ 2

+
g+

σ 3
Ñ(σ, τ ) = g̈−

σ
+

ġ+

σ 2
.

Before going on to compute the currents, note that (45) can be modified so that the interior
field is any source-free solution of Maxwell’s equations, i.e.,

F α =
{

2F (σ, τ ) in V ′

F int(r, t) in V

∇ · F int = 0 i∂tF int = ∇ × F int.

The choice of an interior solution other than F 0(σ, τ ) will, of course, modify the equivalent
sources on Sα . However, unless F int fits into the spheroidal geometry, the resulting sources
can be expected to be much more complicated and unnatural, and probably will not benefit
from the ‘magic’ of complex source points. Probably the most general class of interior fields
that do fit the geometry consists of arbitrary multiples of F 0, i.e.

F int(r, t) = νF 0(σ, τ ).

Then (61) is replaced by

δF (σ, τ ) = µF (σ, τ ) − νF (−σ, τ) µ + ν = 2 (64)

and all computations below easily generalize to this case. However, only when µ = ν = 1
can the radiating surface be interpreted as a combination of branch cuts! I believe that this
case is the most natural and expect it also to be the most useful. For this reason, only it will
be treated here, although our results easily extend to the case (64).

I now compute or estimate the various inner and outer products needed in (60). Free use
will be made of the results derived in the appendix, and there is no pretense of rigour. I will
assume that

0 < α � a

which means that the spheroid is rather flat. By (3) and (75),

ρ ≈
√

a2 − q2 z = αq |∇p| ≈ a

|σ | |∇q| ≈ ρ

|σ | .
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Thus

u = r − ia

σ
= ρ + (z − ia)â

σ
≈ ρ − ia

σ
. (65)

Recall that π is orthogonal to a, so that

π = πρeρ + πφeφ

and thus

λ = u · π = r · π

σ
= ρ · π

σ
= ρπρ

σ
.

From (76) in the appendix, the outgoing unit normal on Sα is

ep = ∇p

|∇p| = αr + qa√
α2 + q2

√
α2 + a2

≈ qâ√
α2 + q2

= q

|σ | â. (66)

The α2 term has been retained in the denominator to control the singularity at the equator.
(This is the main advantage of using Sα instead of S0.) The approximation (66) fails very near
the equator q = 0, where ep is far from parallel to a, but the analysis in [HLK0] suggests that,
for scalar wavelets at least, the immediate vicinity of q = 0 can be ignored. More precisely,
it was shown that for time-harmonic driving signals of frequency ω, the effective aperture,
emitting most of the radiation, consists of the front surface of the disc S0 parametrized by

k−1 � q � a i.e. ρ2 � a2 − 1/k2 k = ω/c. (67)

Of course, this has significance only if ka > 1. Lower frequencies generate mostly a reactive
field that swirls around the source region and is eventually reabsorbed4. Thus, to obtain a
high radiation efficiency, it is necessary to use signals g(τ) with little low-frequency content,
such as linear combinations of high-order derivatives of the Cauchy kernel (26). (Of course, a
careful repetition of the analysis needs to be made specifically for the electromagnetic case.)

The inner products needed to find j0 are

ep · u = ep · (∇p − i∇q) = |∇p| ≈ a

|σ |
ep · π ≈ q

|σ | â · π = 0

ep · (u × π) = π · (ep × u) = π · (ep × (∇p − i∇q))

= i|∇q|π · (eq × ep) = i|∇q|π · eφ ≈ iρ

|σ |πφ.

The outer products needed for j are

ep × u = i|∇q|eφ ≈ i
ρ

|σ |eφ

ep × π ≈ q

|σ | â × π ≈ iσ

|σ | (πρeφ − πφρ̂)

ep × (u × π) = (ep · π)u − (ep · u)π ≈ −(ep · u)π ≈ − a

|σ |π.

Using these in (60) gives the approximate surface charge density

σ |σ |j0 ≈ L̃aρπρ + Ñσρπφ (68)

4 This is consistent with the general fact that ‘DC components do not propagate’. It is also the basis of one of
the close connections between electromagnetic wavelets and mathematical wavelet theory, since it amounts to an
admissibility condition on electromagnetic wavelets [K94, p 214].
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and the approximate surface current density

σ |σ |j ≈ (L̃ρ2πρ − M̃σ 2πρ + Ñaρπφ)eφ + (M̃σ 2πφ + Ñaσπρ)eρ. (69)

As expected from our example of the analytic Coulomb potential, the equivalent sources on
a spheroid are complex, indicating the presence of unrealizable magnetic charges. Since the
magnetic sources in that example vanished as α → 0, it is reasonable to hope that this will
also be the case here. As the spheroid Sα with 0 < α � a is very flat, it may be possible
to choose the phase of the polarization vector π (representing the mixture of electric and
magnetic dipoles) so as to minimize the magnetic sources over Sα excluding the vicinity of
the rim C, and the latter region can be ignored for highly oscillatory driving signals as shown
in [HLK0]. This question will be addressed in detail elsewhere.

Finally, we compute the impulse response of the antenna, i.e. the sources jµ when the
driving signal is the impulse

g0(t) = δ(t) ⇒ g(τ) = 1

2iπτ
= C1(τ ).

Note that the real point source version of the scalar wavelet (18) is then the retarded propagator
for the wave equation,


 → 
0(r, t) = δ(t − r)

r
�
0 = 4πδ(r, t) (70)

where the precise relation between 
 and 
0 is given in terms of complex-distance potential
theory in [K3]. The mixed signals are

g+ = 1

2iπ(τ − σ)
+

1

2iπ(τ + σ)
= τ

iπu
where u = τ 2 − σ 2

g− = 1

2iπ(τ − σ)
− 1

2iπ(τ + σ)
= σ

iπu

and their time derivatives are

ġ+ = −τ 2 + σ 2

iπu2
g̈+ = 2τ 3 + 6τσ 2

iπu3

ġ− = − 2στ

iπu2
g̈− = 6τ 2σ + 2σ 3

iπu3
.

This gives

L̃ = 15σ 4τ − 10σ 2τ 3 + 3τ 5

iπσ 3u3
M̃ = 9σ 4τ − 2σ 2τ 3 + τ 5

iπσ 3u3
Ñ = 3σ 4 + 6σ 2τ 2 − τ 4

iπσ 2u3
,

which can be substituted into (68) and (69) to obtain the impulse response.
In view of the discussion following (67), we are actually more interested in the system’s

response to the bandbass signal in (26),

Cn(τ) = (i∂t )
n−1C1(τ ) = (n − 1)!

2π inτ n
= (−∂b)

n−1C1(τ ).

The induced surface source j (n)
µ can be computed directly from the impulse response:

j (n)
µ = (−∂b)

n−1jµ. (71)
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5. Concluding note

Source-free relativistic fields always extend analytically to the double tube domain T± (21) of
complex spacetime, as explained in [K3]. I find it quite remarkable that the extension 
(σ, τ)

of the propagator (70) generates fields with spatially compact sources that are analytic in the
source-free parts TB of complex spacetime obtained by removing the world tubes swept out
by the sources. The boundary values of these analytic fields then characterize the singular
sources, as shown above.

Acknowledgments

It is a pleasure to thank Drs Richard Albanese, Iwo Bialynicki-Birula, Ehud Heyman, Ted
Newman, Ivor Robinson, Andzej Trautman and Arthur Yaghjian for friendly discussions and
suggestions related to this work, and David Park for generous help with the figures using his
DrawGrahics package. I am especially grateful to Dr Arje Nachman for his sustained support
of my research, most recently through AFOSR grant #F49620-01-1-0271.

Appendix

The complex unit vector u is given by

u = ∇σ = z

σ
= ∇p − i∇q (72)

hence

∇p = pr + qa

p2 + q2
∇q = pa − qr

p2 + q2
. (73)

Note that

u · u = 1 ⇒ |∇p|2 − |∇q|2 = 1 ∇p · ∇q = 0 (74)

and

|∇p|2 + |∇q|2 = u∗ · u = r2 + a2

p2 + q2
= p2 − q2 + 2a2

p + 2 + q2

which gives

|∇p|2 = p2 + a2

p2 + q2
|∇q|2 = a2 − q2

p2 + q2
. (75)

The unit vectors in the directions of increasing p and q are therefore

ep = pr + qa√
p2 + q2

√
p2 + a2

eq = pa − qr√
p2 + q2

√
a2 − q2

. (76)
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